Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Int J Technol Assess Health Care ; 40(1): e24, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577775

RESUMO

BACKGROUND: Traditional therapies are crucial in maintaining and improving human well-being. China's healthcare policymakers are attempting to use health technology assessment (HTA) as a decision-making supportive tool. The value assessment framework for Chinese patent medicine (CPM) has been developed and is being adopted and validated widely by research institutions. Subsequently, the healthcare decision-makers particularly hanker for the value framework of traditional non-pharmacological therapies. METHODS: To construct a practical value framework for traditional non-pharmacological therapies, a scoping review methodology was adopted to identify the evaluation domains and obstacles. A search, screening, and analysis process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Evidence was retrieved from scientific databases and HTA agencies' websites. RESULTS: The search strategy identified 5 guidelines records and 17 acupuncture HTA reports. By synthesizing the valuable reports of CPM and acupuncture evaluation in representative countries, this study found that Mainland China was promoting the comprehensive value assessment of CPM, whereas the United Kingdom, Singapore, Canada, the United States, and Malaysia had carried out the HTA evaluation of acupuncture for various conditions among which chronic pain was the most common. UK and Singapore applied the HTA results to support acupuncture reimbursement decisions. Three domains, including safety, effectiveness, and economy, were commonly adopted. The identified biggest challenge of evaluating traditional non-pharmacological therapies is the scarce high-quality clinical evidence. CONCLUSIONS: This study identified value domains and issues of traditional therapies, and pointed out future research implications, to promote the development value framework of traditional therapies.


Assuntos
Terapia por Acupuntura , Avaliação da Tecnologia Biomédica , Avaliação da Tecnologia Biomédica/organização & administração , Humanos , Terapia por Acupuntura/métodos , Terapias Complementares , Medicina Tradicional Chinesa , Tomada de Decisões , Análise Custo-Benefício
2.
Appl Environ Microbiol ; 90(3): e0232723, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376236

RESUMO

Zinc is an important transition metal that is essential for numerous physiological processes while excessive zinc is cytotoxic. Pseudomonas aeruginosa is a ubiquitous opportunistic human pathogen equipped with an exquisite zinc homeostatic system, and the two-component system CzcS/CzcR plays a key role in zinc detoxification. Although an increasing number of studies have shown the versatility of CzcS/CzcR, its physiological functions are still not fully understood. In this study, transcriptome analysis was performed, which revealed that CzcS/CzcR is silenced in the absence of the zinc signal but modulates global gene expression when the pathogen encounters zinc excess. CzcR was demonstrated to positively regulate the copper tolerance gene ptrA and negatively regulate the pyochelin biosynthesis regulatory gene pchR through direct binding to their promoters. Remarkably, the upregulation of ptrA and downregulation of pchR were shown to rescue the impaired capacity of copper tolerance and prevent pyochelin overproduction, respectively, caused by zinc excess. This study not only advances our understanding of the regulatory spectrum of CzcS/CzcR but also provides new insights into stress adaptation mediated by two-component systems in bacteria to balance the cellular processes that are disturbed by their signals. IMPORTANCE: CzcS/CzcR is a two-component system that has been found to modulate zinc homeostasis, quorum sensing, and antibiotic resistance in Pseudomonas aeruginosa. To fully understand the physiological functions of CzcS/CzcR, we performed a comparative transcriptome analysis in this study and discovered that CzcS/CzcR controls global gene expression when it is activated during zinc excess. In particular, we demonstrated that CzcS/CzcR is critical for maintaining copper tolerance and iron homeostasis, which are disrupted during zinc excess, by inducing the expression of the copper tolerance gene ptrA and repressing the pyochelin biosynthesis genes through pchR. This study revealed the global regulatory functions of CzcS/CzcR and described a new and intricate adaptive mechanism in response to zinc excess in P. aeruginosa. The findings of this study have important implications for novel anti-infective interventions by incorporating metal-based drugs.


Assuntos
Cobre , Fenóis , Infecções por Pseudomonas , Tiazóis , Humanos , Cobre/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Zinco/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
aBIOTECH ; 4(3): 185-201, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37970467

RESUMO

As a conserved epigenetic mark, DNA cytosine methylation, at the 5' position (5-mC), plays important roles in multiple biological processes, including plant immunity. However, the involvement of DNA methylation in the determinants of virulence of phytopathogenic fungi remains elusive. In this study, we profiled the DNA methylation patterns of the phytopathogenic fungus Verticillium dahliae, one of the major causal pathogens of Verticillium wilt disease that causes great losses in many crops, and explored its contribution in fungal pathogenicity. We reveal that DNA methylation modification is present in V. dahliae and is required for its full virulence in host plants. The major enzymes responsible for the establishment of DNA methylation in V. dahliae were identified. We provided evidence that DNA methyltransferase-mediated establishment of DNA methylation pattern positively regulates fungal virulence, mainly through repressing a conserved protein kinase VdRim15-mediated Ca2+ signaling and ROS production, which is essential for the penetration activity of V. dahliae. In addition, we further demonstrated that histone H3 lysine 9 trimethylation (H3K9me3), another heterochromatin marker that is closely associated with 5-mC in eukaryotes, also participates in the regulation of V. dahliae pathogenicity, through a similar mechanism. More importantly, DNA methyltransferase genes VdRid, VdDnmt5, as well as H3K9me3 methyltransferase genes, were greatly induced during the early infection phase, implying that a dynamic regulation of 5-mC and H3K9me3 homeostasis is required for an efficient infection. Collectively, our findings uncover an epigenetic mechanism in the regulation of phytopathogenic fungal virulence. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00117-5.

4.
aBIOTECH ; 4(2): 124-139, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37581024

RESUMO

Facing a deteriorating natural environment and an increasing serious food crisis, bioengineering-based breeding is increasing in importance. To defend against pathogen infection, plants have evolved multiple defense mechanisms, including pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). A complex regulatory network acts downstream of these PTI and ETI pathways, including hormone signal transduction and transcriptional reprogramming. In recent years, increasing lines of evidence show that epigenetic factors act, as key regulators involved in the transcriptional reprogramming, to modulate plant immune responses. Here, we summarize current progress on the regulatory mechanism of DNA methylation and histone modifications in plant defense responses. In addition, we also discuss the application of epigenetic mechanism-based resistance strategies in plant disease breeding.

5.
Microbiol Spectr ; : e0112323, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646520

RESUMO

Pseudomonas aeruginosa has abundant signaling systems that exquisitely control its antibiotic resistance in response to different environmental cues. Understanding the regulation of antibiotic resistance will provide important implications for precise antimicrobial interventions. However, efficient genetic tools for functional gene characterizations are sometimes not available, particularly, in clinically isolated strains. Here, we established a type I-F CRISPRi (CSYi) system for programmable gene silencing. By incorporating anti-CRISPR proteins, this system was even applicable to bacterial hosts encoding a native type I-F CRISPR-Cas system. With the newly developed gene-silencing system, we revealed that the response regulator CzcR from the zinc (Zn2+)-responsive two-component system CzcS/CzcR is a repressor of efflux pumps MexAB-OprM and MexGHI-OpmD, which inhibits the expression of both operons by directly interacting with their promoters. Repression of MexAB-OprM consequently increases the susceptibility of P. aeruginosa to multiple antibiotics such as levofloxacin and amikacin. Together, this study provided a simple approach to study gene functions, which enabled us to unveil the novel role of CzcR in modulating efflux pump genes and multidrug resistance in P. aeruginosa. IMPORTANCE P. aeruginosa is a ubiquitous opportunistic pathogen frequently causing chronic infections. In addition to being an important model organism for antibiotic-resistant research, this species is also important for understanding and exploiting CRISPR-Cas systems. In this study, we established a gene-silencing system based on the most abundant type I-F CRISPR-Cas system in this species, which can be readily employed to achieve targeted gene repression in multiple bacterial species. Using this gene-silencing system, the physiological role of Zn2+ and its responsive regulator CzcR in modulating multidrug resistance was unveiled with great convenience. This study not only displayed a new framework to expand the abundant CRISPR-Cas and anti-CRISPR systems for functional gene characterizations but also provided new insights into the regulation of multidrug resistance in P. aeruginosa and important clues for precise anti-pseudomonal therapies.

6.
Huan Jing Ke Xue ; 44(4): 2293-2303, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040978

RESUMO

The soil pH, water content, nutrients, and microbial community composition and diversity among one-year term (E1), short-term (E4), and long-term (E10) enclosures were analyzed for understanding the response of soil bacterial and fungal communities to long-term enclosure in degraded patches of alpine meadow in the source zone of the Yellow River, through determining the soil physicochemical properties and microbial diversity using high-throughput sequencing technology. The results showed that the E1 enclosure significantly decreased soil pH, whereas long-term and short-term enclosures increased soil pH. The long-term enclosure could significantly increase soil water content and total nitrogen content, and the short-term enclosure could significantly increase available phosphorus content. The long-term enclosure could significantly increase the bacterial Proteobacteria. The short-term enclosure could significantly increase the abundance of the bacteria Acidobacteriota. However, the abundance of the fungus Basidiomycota decreased in both long-term and short-term enclosures. With the extension of enclosure years, the Chao1 index and Shannon diversity index of bacteria showed an increasing trend, but there was no significant difference between long-term and short-term enclosures. The Chao1 index of fungi gradually increased, and the Shannon diversity index first increased and then decreased, but there was no significant difference between long-term and short-term enclosures. Redundancy analysis indicated that enclosure altered microbial community composition and structure mainly by changing soil pH and water content. Therefore, the E4 short-term enclosure could significantly improve the soil physicochemical properties and microbial diversity at the degraded patches of alpine meadow. The long-term enclosure is not necessary and will lead to the waste of grassland resources, reduction in biodiversity, and restriction of wildlife activities.


Assuntos
Pradaria , Microbiota , Solo/química , Microbiologia do Solo , Rios , Bactérias/metabolismo , Fungos
7.
Sci Total Environ ; 876: 162641, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921851

RESUMO

Fostering crop-livestock integration via crop-forage rotation provides opportunities to cope with land degradation, feed deficit, and agropastoral sustainability. Farmers' preferences for forage options are influenced by economic benefit, environmental preference, and productive performance. However, there is little information available on evaluating multiple trade-offs of forage systems for the design of crop-forage rotations. Here, we performed a comprehensive evaluation to compare the economic, environmental, and productive indicators of five typical forage systems in terms of habitat conditions, soil ecosystem services, economic profit, and forage yield and nutritive value on the southern Tibetan Plateau. Alfalfa pasture and silage corn were mostly cultivated in lower altitudes, with more abundant precipitation, and higher growing degree days. Soil carbon and nitrogen accumulation were significantly higher in perennial alfalfa than in the other forage systems. The relative feed value of alfalfa pasture was also evidently greater than the other forage systems, whereas the yield of silage corn was among the highest. Alfalfa pasture presented superior economic benefits compared to the others. But the alfalfa pasture over six years showed a significant decrease in soil carbon and nitrogen storage, net present value, and yield. Forage systems generally have more soil carbon accumulation, but only forage legumes are more likely to positively affect soil nitrogen retention compared to cereal croplands. The trade-offs among economic, environmental, and productive indicators demonstrated that annual forage systems (silage corn, forage oat, and ryegrass) met productive target rather than environmental and economic objectives, while perennial alfalfa showed synergies among the three goals. These findings indicate that integrating crop-forage rotation, particularly introducing legume forages into farming systems is an adaptive option for crop-livestock integration on the southern Tibetan Plateau. Given the large topographic variation, suitable crop-forage systems should be designed for the heterogeneous Yarlung Zangbo River valleys. Among them, alfalfa-silage corn intercropping is recommended as a promising system to meet both productivity and profitability.


Assuntos
Ecossistema , Gado , Animais , Indicadores Ambientais , Tibet , Solo , Zea mays , Medicago sativa , Carbono , Nitrogênio
8.
Cell Rep ; 42(3): 112163, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827182

RESUMO

Despite extensive investigations in mammals and yeasts, the importance and specificity of COMPASS-like complex, which catalyzes histone 3 lysine 4 methylation (H3K4me), are not fully understood in plants. Here, we report that JMJ28, a Jumonji C domain-containing protein in Arabidopsis, recognizes specific DNA motifs through a plant-specific WRC domain and acts as an interacting factor to guide the chromatin targeting of ATX1/2-containing COMPASS-like complex. JMJ28 associates with COMPASS-like complex in vivo via direct interaction with RBL. The DNA-binding activity of JMJ28 is essential for both the targeting specificity of ATX1/2-COMPASS and the deposition of H3K4me at specific loci but exhibit functional redundancy with alternative COMPASS-like complexes at other loci. Finally, we demonstrate that JMJ28 is a negative regulator of plant immunity. In summary, our findings reveal a plant-specific recruitment mechanism of COMPASS-like complex. These findings help to gain deeper insights into the regulatory mechanism of COMPASS-like complex in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina , Metilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
9.
J Med Chem ; 66(1): 611-626, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542759

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell activation, and targeting HPK1 is considered a promising strategy for improving responses to antitumor immune therapies. The biggest challenge of HPK1 inhibitor design is to achieve a higher selectivity to GLK, an HPK1 homology protein as a positive regulator of T-cell activation. Herein, we report the design of a series of macrocycle-based HPK1 inhibitors via a conformational constraint strategy. The identified candidate compound 5i exhibited HPK1 inhibition with an IC50 value of 0.8 nM and 101.3-fold selectivity against GLK. Compound 5i also displayed good oral bioavailability (F = 27-49%) in mice and beagles and favorable metabolic stability (T1/2 > 186.4 min) in human liver microsomes. More importantly, compound 5i demonstrated a clear synergistic effect with anti-PD-1 in both MC38 (MSI) and CT26 (MSS) syngeneic tumor mouse models. These results showed that compound 5i has a great potential in immunotherapy.


Assuntos
Proteínas Serina-Treonina Quinases , Linfócitos T , Cães , Animais , Camundongos , Humanos , Linfócitos T/metabolismo , Ativação Linfocitária , Imunoterapia
10.
Proc Natl Acad Sci U S A ; 120(1): e2208525120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580600

RESUMO

Dimethylated histone H3 Lys9 (H3K9me2) is a conserved heterochromatic mark catalyzed by SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) methyltransferases in plants. However, the mechanism underlying the locus specificity of SUVH enzymes has long been elusive. Here, we show that a conserved N-terminal motif is essential for SUVH6-mediated H3K9me2 deposition in planta. The SUVH6 N-terminal peptide can be recognized by the bromo-adjacent homology (BAH) domain of the RNA- and chromatin-binding protein ANTI-SILENCING 1 (ASI1), which has been shown to function in a complex to confer gene expression regulation. Structural data indicate that a classic aromatic cage of ASI1-BAH domain specifically recognizes an arginine residue of SUVH6 through extensive hydrogen bonding interactions. A classic aromatic cage of ASI1 specifically recognizes an arginine residue of SUVH6 through extensive cation-π interactions, playing a key role in recognition. The SUVH6-ASI1 module confers locus-specific H3K9me2 deposition at most SUVH6 target loci and gives rise to distinct regulation of gene expression depending on the target loci, either conferring transcriptional silencing or posttranscriptional processing of mRNA. More importantly, such mechanism is conserved in multiple plant species, indicating a coordinated evolutionary process between SUVH6 and ASI1. In summary, our findings uncover a conserved mechanism for the locus specificity of H3K9 methylation in planta. These findings provide mechanistic insights into the delicate regulation of H3K9 methylation homeostasis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Arginina/metabolismo , Catálise
11.
Sci Total Environ ; 856(Pt 1): 159033, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183665

RESUMO

Biochar application for the remediation of cadmium (Cd)-contaminated soils may result in a relative deficiency of phosphorus (P) due to the disruption of soil nutrient balance. However, the P acquisition strategies of plants in such situation are still unclear. In this study, analyses on soil zymography and root morphology were combined for the first time to investigate the effects of pristine and P-modified biochars from apple tree branches on the P acquisition strategies of wheat under Cd stress. The results show that the application of pristine biochar exacerbated the soil's relative P deficiency. Wheat was forced to improve foraging for P by forming longer and thinner roots (average diameter 0.284 mm) as well as releasing more phosphatase to promote P mobilization in the soil. Moreover, bioavailable Cd affected the P acquisition strategies of wheat through stimulating the release of phosphatase from roots. The P-modified biochar maintained high levels of Olsen-P (>100 mg kg-1) in the soil over time by slow release, avoiding the creation of relative P deficiency in the soil; and increased the average root diameter (0.338 mm) and growth performance index, which promoted shoot growth (length and biomass). Furthermore, the P-modified biochar reduced DTPA-extracted Cd concentration in soils by 79.8 % (pristine biochar by 26.9 %), and decreased the Cd translocation factor from root to shoot as well as Cd concentration in the shoots. Therefore, P-modified biochar has a great potential to regulate the soil element balance (carbon, nitrogen, and P), promote wheat growth, and remediate the Cd-contaminated soil.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo , Triticum/metabolismo , Fósforo , Poluentes do Solo/análise , Carvão Vegetal , Monoéster Fosfórico Hidrolases
12.
Transl Cancer Res ; 12(12): 3591-3603, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38192997

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of death for all non-cancer deaths among breast cancer (BC) patients. The aim of this study was to investigate the risk of cardiovascular mortality (CVM) in patients with BC. Methods: Patients diagnosed with primary BC between 2010 and 2018 were identified through the Surveillance, Epidemiology and End Results (SEER) database. The standardized mortality ratio (SMR) for CVD was calculated to compare the CVM of BC patients with that of the general population. Multivariate competing risk models were performed to identify predictors of CVM in BC patients. Results: Overall, 399,014 BC patients were included from the SEER database, of whom 7,023 (1.8%) suffered death from CVD. The significantly higher overall SMR of CVM was observed in BC patients [SMR =4.84, 95% confidence interval (CI): 4.72-4.95]. Multivariate competing risk regression analysis revealed that age, race, American Joint Committee on Cancer (AJCC) stage, year of diagnosis, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, BC subtype, surgery, chemotherapy, radiation therapy, and median household income as independent predictors of CVM in BC patients. Conclusions: Compared to the general population, BC patients have a higher risk of experiencing CVM during the follow-up period after diagnosis. Early detection and intervention of cardiovascular risk factors would improve overall survival (OS) of BC patients.

13.
Phys Rev Lett ; 129(21): 210501, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36461974

RESUMO

Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.

14.
Front Microbiol ; 13: 1013973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466649

RESUMO

In our previous study of 2,130 Chinese patients with coronary heart disease (CHD), we found that tryptophan (TRP) metabolites contributed to elevated risks of death. Many TRP-derived metabolites require the participation of intestinal bacteria to produce, and they play an important role in the pathogenesis of metabolic diseases such as CHD. So it is necessary to metabolize TRP into beneficial metabolites against CHD or prevent the production of harmful metabolites through external intervention. Indole-3-butyric acid (IBA) may be a key point of gut microbiota that causes TRP metabolism disorder and affects major adverse cardiovascular events in CHD. Therefore, this study aimed to develop a method based on in vitro culture bacteria to evaluate the effects of IBA on specific microbial metabolites quickly. We detected the concentrations of TRP and its metabolites in 11 bacterial strains isolated from feces using liquid chromatography-mass spectrometry, and selected Clostridium sporogenes as the model strain. Then, IBA was used in our model to explore its effect on TRP metabolism. Results demonstrated that the optimal culture conditions of C. sporogenes were as follows: initial pH, 6.8; culture temperature, 37°C; and inoculum amount, 2%. Furthermore, we found that IBA increases the production of TRP and 5-HIAA by intervening TRP metabolism, and inhibits the production of KYNA. This new bacteria-specific in vitro model provides a flexible, reproducible, and cost-effective tool for identifying harmful agents that can decrease the levels of beneficial TRP metabolites. It will be helpful for researchers when developing innovative strategies for studying gut microbiota.

15.
Microbiol Spectr ; 10(6): e0284622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36416561

RESUMO

Two-component system (TCS) plays a vital role in modulating target gene expression in response to the changing environments. Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can survive under diverse stress conditions. The great adaptability of P. aeruginosa relies heavily on the abundant TCSs encoded by its genome. However, most TCSs in P. aeruginosa have not been well-characterized. CzcS/CzcR is a metal responsive TCS which displays multiple regulatory functions associated with metal hemostasis, quorum sensing activity and antibiotic resistance. In this study, we found that swimming motility of P. aeruginosa was completely abolished during zinc (Zn2+) stress when the czcR gene from the TCS CzcS/CzcR was deleted. Noticeably, CzcR was dispensable for swimming without the stress of Zn2+ excess. CzcR was shown to be activated by Zn2+ stress possibly through inducing its expression level and triggering its phosphorylation to positively regulate swimming which was abolished by Zn2+ stress in a CzcR-independent manner. Further TEM analyses and promoter activity examinations revealed that CzcR was required for the expression of genes involved in flagellar biosynthesis during Zn2+ stress. In vitro protein-DNA interaction assay showed that CzcR was capable of specifically recognizing and binding to the promoters of operons flgBCDE, flgFGHIJK, and PA1442/FliMNOPQR/flhB. Together, this study demonstrated a novel function of CzcR in regulating flagellar gene expression and motility in P. aeruginosa when the pathogen encounters Zn2+ stress conditions. IMPORTANCE The fitness of bacterial cells depends largely on their ability to sense and respond quickly to the changing environments. P. aeruginosa expresses a great number of signal sensing and transduction systems that enable the pathogen to grow and survive under diverse stress conditions and cause serious infections at different sites in many hosts. In addition to the previously characterized functions to regulate metal homeostasis, quorum sensing activity, and antibiotic resistance, here we report that CzcR is a novel regulator essential for flagellar gene expression and swimming motility in P. aeruginosa during Zn2+ stress. Since swimming motility is important for the virulence of P. aeruginosa, findings in this study might provide a new target for the treatment of P. aeruginosa infections with Zn2+-based antimicrobial agents in the future.


Assuntos
Pseudomonas aeruginosa , Zinco , Zinco/farmacologia , Zinco/metabolismo , Pseudomonas aeruginosa/metabolismo , Natação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum , Regulação Bacteriana da Expressão Gênica
16.
Plant Genome ; : e20289, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36444889

RESUMO

As conserved regulatory agents, noncoding RNAs (ncRNAs) have an important impact on many aspects of plant life, including growth, development, and environmental response. Noncoding RNAs can travel through not only plasmodesma and phloem but also intercellular barriers to regulate distinct processes. Increasing evidence shows that the intercellular trans-kingdom transmission of ncRNAs is able to modulate many important interactions between plants and other organisms, such as plant response to pathogen attack, the symbiosis between legume plants and rhizobia and the interactions with parasitic plants. In these interactions, plant ncRNAs are believed to be sorted into extracellular vesicles (EVs) or other nonvesicular vehicles to pass through cell barriers and trigger trans-kingdom RNA interference (RNAi) in recipient cells from different species. There is evidence that the features of extracellular RNAs and associated RNA-binding proteins (RBPs) play a role in defining the RNAs to retain in cell or secrete outside cells. Despite the few reports about RNA secretion pathway in plants, the export of extracellular ncRNAs is orchestrated by a series of pathways in plants. The identification and functional analysis of mobile small RNAs (sRNAs) are attracting increasing attention in recent years. In this review, we discuss recent advances in our understanding of the function, sorting, transport, and regulation of plant extracellular ncRNAs.

17.
J Integr Plant Biol ; 64(11): 2060-2074, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35984097

RESUMO

Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. Abscisic acid receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Poro Nuclear/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética
18.
Microbiol Immunol ; 66(7): 353-360, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524491

RESUMO

The adverse factors impacting the intestinal microbiota of newborns remain to be elucidated. We put forward a hypothesis that hyperoxia in combination with rituximab exhibits a synergistic effect that interferes with neonatal intestinal microbiota. Six C57BL/6J mice, aged 12 weeks and pregnant 18 days, were purchased. Their pups were breastfed and raised under a 75% oxygen or conventional environment. Low- (20 mg/kg) and high-dose (40 mg/kg) rituximab were intraperitoneally administered. Fecal genomic DNA was extracted and sequenced by a 16S rRNA platform. Severe intestinal dysbiosis in newborns were observed, whereas mild dysbiosis was caused by inducing hyperoxia alone, confirming the synergistic interference of the combination of hyperoxia and B-cell antagonist (rituximab) in neonatal intestinal microbiota disruption. Slight dysbiosis was observed in the intestinal microbiota of dams, indicating their much robust ability to confront hyperoxic conditions. The abundance of Akkermansia muciniphila was significantly and extensively altered in both pups and dams after being subjecting them to hyperoxic conditions with or without rituximab administration. In conclusion, this work demonstrated that the synergistic effect of hyperoxia and rituximab led to severe intestinal dysbiosis in newborns. More studies are recommended to explore the precise regulatory mode between hyperoxia and rituximab in intestinal microbiota.


Assuntos
Disbiose , Hiperóxia , Animais , Animais Recém-Nascidos , Disbiose/induzido quimicamente , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , RNA Ribossômico 16S/genética , Rituximab/efeitos adversos
19.
Proc Natl Acad Sci U S A ; 119(12): e2114583119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290117

RESUMO

Communication between interacting organisms via bioactive molecules is widespread in nature and plays key roles in diverse biological processes. Small RNAs (sRNAs) can travel between host plants and filamentous pathogens to trigger transkingdom RNA interference (RNAi) in recipient cells and modulate plant defense and pathogen virulence. However, how fungal pathogens counteract transkingdom antifungal RNAi has rarely been reported. Here we show that a secretory protein VdSSR1 (secretory silencing repressor 1) from Verticillium dahliae, a soil-borne phytopathogenic fungus that causes wilt diseases in a wide range of plant hosts, is required for fungal virulence in plants. VdSSR1 can translocate to plant nucleus and serve as a general suppressor of sRNA nucleocytoplasmic shuttling. We further reveal that VdSSR1 sequesters ALY family proteins, adaptors of the TREX complex, to interfere with nuclear export of the AGO1­microRNA (AGO1­miRNA) complex, leading to a great attenuation in cytoplasmic AGO1 protein and sRNA levels. With this mechanism, V. dahliae can suppress the accumulation of mobile plant miRNAs in fungal cells and succedent transkingdom silencing of virulence genes, thereby increasing its virulence in plants. Our findings reveal a mechanism by which phytopathogenic fungi antagonize antifungal RNAi-dependent plant immunity and expand the understanding on the complex interaction between host and filamentous pathogens.


Assuntos
MicroRNAs , Verticillium , Transporte Ativo do Núcleo Celular , Antifúngicos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/microbiologia , Plantas/genética , RNA de Plantas , Verticillium/metabolismo
20.
Sci Total Environ ; 819: 152876, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998767

RESUMO

Phosphate (P)-modified biochar is a good material for cadmium (Cd) immobilization, and the pore-forming effect of potassium ions (K+) can favor the P loading on biochar. However, few studies have been done specifically on Cd(II) removal by composites of potassium phosphates with biochar, and the removal potential and mechanisms are not clear. Herein, apple tree branches, a major agricultural waste suitable for the development of porous materials, were pyrolyzed individually or together with KH2PO4, K2HPO4·3H2O, or K3PO4·3H2O to obtain biochars to remove Cd(II), denoted as pristine BC, BC-1, BC-2, and BC-3, respectively. The results showed that the orthophosphates containing more K+ enlarged the specific surface area, total pore volume and phosphorus loading of biochar. Co-pyrolysis of apple tree branches and P promoted the thermochemical transformation of P species. Only weak signal of orthophosphate was observed in the pristine BC, while the presence of orthophosphate, pyrophosphate and metaphosphate were detected in BC-1, and BC-2 and BC-3 showed the presence of orthophosphate and pyrophosphate. The maximum Cd(II) adsorption capacities of pristine BC, BC-1, BC-2 and BC-3 were 10.4, 88.5, 95.8, and 116 mg·g-1, respectively. Orthophosphate modification enhanced the Cd(II) adsorption capacity due to the formation of Cd-P-precipitates, namely Cd5(PO4)3Cl, Cd5(PO4)3OH, Cd3(PO4)2, Cd2P2O7, and Cd(PO3)2. Furthermore, higher cation exchange efficiencies between Cd(II) and K+ in P-modified biochars also contributed to their high Cd(II) adsorption capacity. Cd(II) removal by BC-3 from artificially polluted water bodies showed more than 99.98% removal rates. Application of BC-3 also reduced the diethylene triamine pentaacetic acid-extracted Cd(II) in soil by 69.1%. The co-pyrolysis of apple tree branches and potassium phosphates shows great prospect in Cd(II) wastewater/soil treatment and provide a promising solution for agricultural waste utilization and carbon sequestration.


Assuntos
Malus , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Carvão Vegetal , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...